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Abstract 

The role of a reference plane for the description of 
puckered ring molecules is discussed. Two such 
planes, the least-squares plane (LSP) and the mean 
plane (MP), are presented and compared. A simple 
way of calculating the LSP that avoids the secular 
equation is given. Conditions under which the two 
planes coincide are derived. The advantages of the 
MP approach are stressed. 

This communication investigates the connection 
between two different reference planes used in the 
study of puckered N-membered ring molecules. One 
is the N-atom least-squares plane (LSP) (Schomaker, 
Waser, Marsh & Bergman, 1959; Blow, 1960; Hamil- 
ton, 1961 ; Rollett, 1965; Scheringer, 1971), the other 
is the mean plane (MP) of Cremer & Pople (1975a) 
which was introduced in order to generalize a method 
first suggested by Kilpatrick, Pitzer & Spitzer (1947). 

The geometry of a puckered N-membered ring is 
defined by 3 N - 6  parameters, which can be divided 
into three sets: (1) the N bond lengths; (2) N - 3  
parameters (e.g. internal ring angles) describing, if 
puckering is reduced, the shape of the planar ring; 
(3) N -  3 parameters determining the deviation from 
planarity and the shape of the puckered ring. It seems 
natural to use the latter set to describe conformational 
changes of an N-membered ring. Two different ways 
of deriving the puckering parameters are possible: 
first, from the z components of the Cartesian coordi- 
nates of the ring atoms provided the planar ring is in 
the xy plane; secondly, from the dihedral angles of 
the puckered ring. Since in both cases these par- 
ameters are N in number, one has to impose three 
non-arbitrary conditions in order to reduce z coordi- 
nates or dihedral angles to N - 3 non-arbitrary quan- 
tities. 

In the first case, this is accomplished by introducing 
the MP (Cremer & Pople, 1975a). The corresponding 
equations are exact and hold for any puckered N- 
membered ring. In the case of the dihedral angles, 
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an exact method for reducing from N to N - 3  par- 
ameters has not yet been found. Only if an 
infinitesimally puckered ring is considered can condi- 
tions similar to those of the concept of the MP be 
derived (Rao, Westhof & Sundaralingam, 1981). 
However, as is shown in the Appendix, t  the corre- 
sponding N - 3  parameters become meaningless as 
soon as a ring with finite puckering is considered. We 
refrain, therefore, from describing puckering by dihe- 
dral angles. Instead we proceed by comparing the 
MP with the LSP. 

Calculation of the N-atom least-squares plane (LSP) 

In order to determine the LSP the geometrical center 
of the ring is chosen as the origin of the Cartesian 
coordinate system. This implies: 

(Y', r , ) /N  =0,  (1) 

where ri is the position vector of the ith atom of the 
ring. Then the symmetric 3 × 3 matrix T is introduced 
with elements 

2 T,, = ~ x~, T2z= Y~ y~, T33=}-'. z~ (2) 

T,2 = E xt,v,, Ti3 = Y~ xiz,, 7"23 = E y,z,. (3) 

T is closely related to the inertia tensor of the ring. 
Thus, the eigenvector corresponding to the smallest 
eigenvalue of T will determine the normal to the LSP 
and, by convention, this is chosen as the direction of 
the new z axis. The diagonalization of the matrix "1" 
involves the solution of a cubic (secular) equation. 
This is straightforward using the analytical formulas 
for the roots of a cubic equation (Abramowitz & 
Stegun, 1965). If, however, 7"33< T,I and T22, which 
can easily be achieved by starting from MP coordi- 
nates, then 

Z = R,, × Ry/lRx × Ryl, (4) 

t The Appendix containing an analysis of the Rao, Westhof & 
Sundaralingam approach, formulas for the solution of the cubic 
eigenvalue problem, and two examples have been deposited with 
the British Library Lending Division as Supplementary Publication 
No. SUP 39312 (8pp.). Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 
5 Abbey Square, Chester CHI 2HU, England. 

O 1984 International Union of Crystallography 



HANNO ESSI~N AND DIETER CREMER 419 

with 

Rx = ~ x, ri (5) 

Ry = ~ y,r,, (6) 

is a very good approximation to the normal of the 
LSP. After transforming to a coordinate system with 
(4) as the z axis one can again form the vectors (5) 
and (6) and derive a new z axis, etc. For most cases 
three iterations are sufficient to lead to the LSP within 
an accuracy of l 0  -4 ilk. 

If the LSP is the xy plane of the coordinate system 
the z components will obey the following three condi- 
tions: 

E z, = 0, (7) 

Y. z,x, = 0, (8)  

E z~v~ = 0, (9) 

in view of (1) and the diagonalization of T. 

The physical meaning of the puckering coordinates 
and of the MP becomes obvious when considering 
the out-of-plane deviations of an N-membered ring 
for qr, > 0 and ~o,, = 0 or 90 °. The z displacements 
generated in this way correspond to the genuine out- 
of-plane vibrational modes of the N-membered ring, 
of which there exist just N - 3 .  Thus, knowing the 
puckering coordinates of any puckered ring, one can 
immediately identify the vibrational modes which 
transform the ring conformation in question back into 
the planar ring lying in the MP (Cremer, 1980). Given 
the z coordinates of the LSP, a similar analysis is not 
possible. 

If one wishes to generate the coordinates for several 
puckered ring conformers for known values of the N 
bond lengths, the N - 3  endocyclic bond angles and 
the N - 3  puckering coordinates, one proceeds as 
follows. Values of ~0r,, are selected corresponding to 
the puckered forms to be considered. For each ~o,,, 
value, the z coordinates are calculated from 

The mean plane (MP) of the ring 

One can determine the corners of a regular polygon 
by 

x[ = r cos [27r( i -  1)/N],  (10) 

y~= r sin [27r( i -  1 ) /S ] ,  (11) 

where r is the radius of the circumscribed circle of 
the polygon. The MP is defined as that xy plane for 
which the z components obey the following three 
conditions: 

zi = 0, (12) 

Y~ z,xT=O, (13) 

E ztY~ =0.  (14) 

These conditions are closely analogous to (7)--(9) for 
the LSP. If the projection of a puckered ring onto 
the LSP is a regular polygon, the two planes must 
coincide. In fact the two planes coincide in a number 
of other cases too. Since (8) and (9) hold for the 
replacements x~ ~ axe, Yi ~ by~ for arbitrary constants 
a and b, the LSP will be invariant to such distortions. 
If the regular polygon is among the distorted 
geometries, the LSP and the MP will always coincide. 
Also, if the projection of an even-membered ring 
possesses Dmh symmetry, the products x~z~ and y~zi 
will cancel pairwise and the MP and LSP will 
coincide. 

The MP can be calculated as the plane with normal 
vector 

where 
z=R, ×R2/IR, ×R=I (15) 

Ri = E  x~ri, (16) 

R 2 = E  y[r:. (17) 

( N - i ) ~ 2  

z , = ( 2 / N )  '/2 E q~ 
m=2 

xcos[~o, , ,+27rm(i-1)/N] fo rodd  N, (18) 
N / 2 - 1  

z , = ( 2 / N )  '/2 E 
m = 2  

qm cos [~0,,, + 2 7 r m ( i -  1) /N]  

+(1/N)I/2qN/2(--1)~-~ foreven N. (19) 

Then, the projections of the known bond lengths and 
bond angles onto the mean plane are calculated 
leading to a new set of 2 N - 3  internal coordinates, 
from which the xi, Yi coordinates are derived in the 
usual way. Several authors (e.g. Rao, Westhof & Sun- 
daralingam, 1981) have changed the original 
approach (Cremer & Pople, 1975b) by keeping xi, yi 
coordinates constant rather than recalculating them 
for each conformer considered. This, of course, leads 
to unpredictable changes in bond lengths, bond 
angles and puckering parameters. Attempts to study 
conformational processes like pseudorotation with 
this undue simplification lead to erroneous results, 
since the new conformers do not belong to the family 
of conformers described by the original puckering 
parameters. 

Any conformer generated from the same set of N 
bond lengths, N - 3 bond angles and N - 4 puckering 
parameters while varying ~0m possesses the same MP. 
The M P  remains fixed for any conformational change 
of  the ring. This can easily be verified by comparing 
the normal of the planar ring and the normal of the 
MP of an arbitrary nonplanar conformer: They are 
always parallel, pointing in the same direction. If one 
considers, however, at the same time the LSP, its 
normal will in general deviate slightly from that of 
the MP. In the case of pseudorotation it will precess 
around the normal of the MP. 
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Abstract 

Mr = 184.28, monocl inic ,  P2~/c, a = 12.303 (3), b =  
7.843 (2), c =  11.854 (3) ~ ,  /3 = 107.84 (2) ° , V =  
1088.8A3, Z = 4 ,  D x = l ' 1 2 8 M g m  -3, M o K a  radi- 
ation, h = 0.71069 A, /.t = 0.081 mm -~, F(000) = 408, 
T =  I lOK.  Final R =0-044 for 2395 (out of  3161) 
observed data. A flattening at the tert-butyl side and 
a puckering at the carboxyl side of the ring are ob- 
served. The carbonyl  O atom of  the equatorial  car- 
boxyl group is twisted away from the eclipsed position 
with an a,/3 bond in the ring by 20.2 °, in agreement 
with the synper ip lanar  C ~ - C ~ - C - - O  arrangement  
observed for equatorial  as well as axial carboxyl 
groups in several cyclohexanecarboxyl ic  acids and 
related compounds .  The equatorial  tert-butyl group 
is twisted away from the perfectly staggered position 
by about  4 °. The off-staggering of  the equatorial  tert- 
butyl group in several ring structures is described 
with a Gauss ian  distr ibution function G(to, or) with 
(to) = 0 ° and or = 5 °. The broad distr ibution implies a 
negligible barrier  to rotation of the tert-butyl group 
or a potential  energy well with a 'flat' min imum.  

Introduction 

To expla in  pKa differences between variously sub- 
stituted cyclohexanecarboxyl ic  acids, preferred con- 
formations of the carboxyl group were proposed 
(Sicher, Tich~ & Sipos, 1966a, b; van Bekkum, 
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Verkade & Wepster, 1966; van Bekkum, 1970): in 
equatorial  and axial carboxyl groups the synperi- 
p lanar  arrangement  H - C , , - C = O  and C ~ - C ~ - C - - O  
should be preferred, respectively. Leiserowitz & 
Schmidt  (1965), Dunitz & Strickler (1968) and 
Leiserowitz (1976) pointed out that the synper ip lanar  
C ~ - C ~ - C = O  arrangement  seems to be a general 
feature of  the molecular  shape of a,/3-saturated car- 
boxylic acids, whether the carboxyl group is axial or 
equatorial.  However, only two appropriate  structures 
were used to prove this statement with respect to 
cyclohexanecarboxyl ic  acids. Several crystal struc- 
tures that bear  on this problem have since been 
studied by X-ray analysis.  

The generally accepted perfectly staggered confor- 
mation of tert-butylcyclohexane is not confirmed by 
many empir ical  force-field calculations. Depending  
on the force field used, the predicted off-staggering 
is +17 ° (Altona & Sundara l ingam,  1970), +15-2 ° or 
+8-4 ° (van de Graaf,  Baas & Wepster, 1978). A recent 
MM2 force field (Burkert & Allinger, 1982) found the 
symmetrical  geometry (off-staggering = 0 °) to be the 
most stable one. All calculations show anomalous  
values for the bond angles, bond lengths and torsion 
angles at the tert-butyl side of the ring. 

The aim of  this investigation was to study the 
preferred rotational orientation of the carboxyl and 
tert-butyl group by determining the molecular  struc- 
ture of  trans-4-tert-butyl-l-cyclohexanecarboxylic 
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